### Calibrating Environmental Engineering Models

David Ruppe

### The seem

The team

The research probler

#### The Mode

Modeling the noise

#### Methodology

Overview Locating mode Experimental Design

MCMC sampling

#### Case Study

Chemical spill mo

ummar

# Calibrating Environmental Engineering Models

David Ruppert

Cornell University

September 12, 2007

# Project Team

Calibrating Environmental Engineering Models

David Rupper

Background The team

The Model

Environmental mode Modeling the noise Likelihood

Overview
Locating mode
Experimental Design
RBF approximation

Case Study
Chemical spill model
Monte Carlo

- Christine Shoemaker, co-PI, Professor of Civil and Environmental Engineering
  - PhD in applied math
  - works in applied optimization and environmental engineering
- David Ruppert, co-PI
- Nikolai Blizniouk, PhD student in Operations Research
- other students and post-docs
  - Rommel Regis
  - Stefan Wild
  - Pradeep Mugunthan
  - Dillon Cowan
  - Yingxing Li

### Why is Calibration Difficult?

Calibrating Environmental Engineering Models

David Ruppe

The team

The research problem

Environmental mode Modeling the noise Likelihood

Methodology
Overview

Locating mode Experimental Design RBF approximation MCMC sampling

Case Study
Chemical spill mo

- Likelihood may be multimodal
- Non-Gaussian data
- Spatial and temporal correlations
- non-constant variance: some data are much less accurate than others
- Model is computationally expensive
  - May take minutes or even hours to evaluate the model for one set of parameter values

# Our Approach

Calibrating Environmental Engineering Models

David Rupper

The research proble

The research problem

Environmental mode Modeling the noise

Methodology

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill mode

- uses optimization and radial basis function meta-model to speed computations
- fully Bayesian
- takes into account all parameter uncertainty
- "noise" model includes possible
  - correlation
  - non-Gaussian distribution
  - non-constant variance

# Bayesian versus Frequentist Statistics

#### Calibrating Environmental Engineering Models

David Rupper

Background

The team

The research problem

### The Mode

Environmental mode Modeling the noise Likelihood

### Methodology

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill mod
Monte Carlo

Summarv

• I do have sympathy with the Bayesian philosophy, but

- I use Bayesian methods mainly as a powerful tool for finding estimators with good frequentist properties
- In general, the effect of the prior is  $O(n^{-1})$ 
  - Estimation error is  $O_P(n^{-1/2})$
- In complex nonlinear problems, exact confidence intervals are not impossible
  - Monte Carlo studies typically show the posterior credible intervals are approximate confidence intervals

### Advantages of MCMC

Calibrating Environmental Engineering Models

David Rupper

Background

The research problem

The research prob

The Mode

Modeling the noise
Likelihood

Methodology

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill mode

Summary

Non-Bayesian methods often use

- the central limit theorem
- linearization
- These approximations can create errors than are larger than the effect of the prior in a Bayesian analysis
- Even the bootstrap is justified by asymptotics:
  - the empirical CDF converges to the true CDF

# Deterministic component of model

### Calibrating Environmental Engineering Models

David Rupper

Background

The research prob

The Model

Environmental model

Modeling the noise

Likelihood

### Methodology

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill mode

Summarv

• *i*th observation is

$$Y_i = (Y_{i,1}, \dots, Y_{i,d})^T$$

• in absence of noise:

$$Y_{i,j} = f_j(X_i, \boldsymbol{\beta})$$

- $\bullet$   $\mathit{f_{j}}(\cdot)$  comes from scientific theory
- $X_i$  is a covariate vector
- $oldsymbol{ heta}$  contains the parameters of interest
- noise is modeled empirically

### What noise characteristic can we expect?

### Calibrating Environmental Engineering Models

David Rupper

Background The team

The research problem

Environmental mode

Modeling the noise

Likelihood

Methodology
Overview
Locating mode
Experimental Design
RBF approximation

Case Study
Chemical spill mo

- spatial and temporal correlations
- non-Gaussian distributions: most measured quantities are non-negative
- non-constant variance: variance usually depends on the mean
  - elephants vary more than mice
  - mice vary more than fleas

# Components of the noise model

Calibrating Environmental Engineering Models

David Ruppe

The team

The research proble

Environmental mode

Modeling the noise

Likelihood

Methodology

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill mod

Summar

### We modeled the noise via:

- data transformation: to model
  - non-Gaussian variation
  - non-constant noise variance
- spatial-temporal correlation model

### Transform-both-sides model

### Calibrating Environmental Engineering Models

David Rupper

The team

The research proble

Environmental mod Modeling the noise

#### Methodology -

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill mode

Summary

The transform-both-sides model is

$$h\{Y_{i,j},\lambda_j\} = h\{f_j(X_i,\boldsymbol{\beta}),\lambda_j\} + \epsilon_{i,j},$$

equivalently

$$Y_{i,j} = h^{-1} \left[ h \left\{ f_j(X_i, \boldsymbol{\beta}), \lambda_j \right\} + \epsilon_{i,j}, \lambda_j \right]$$

- transforms both sides of the equation giving deterministic model
- preserves the theoretical model
- $\{h(\cdot,\lambda):\lambda\in\Lambda\}$  is some transformation family

### Transform-both-sides examples

Calibrating Environmental Engineering Models

David Rupper

Background
The team
The research problem

The Model

Environmental mode Modeling the noise Likelihood

Methodology Overview

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill mode

Summary

- the identity transformation gives the usual nonlinear regression model
  - additive Gaussian errors
- if we use the log transformation then

$$Y_{i,j} = \exp \left[\log\{f_j(X_i, \boldsymbol{\beta})\} + \epsilon_{i,j}\right] = f_j(X_i, \boldsymbol{\beta}) \exp(\epsilon_{i,j})$$

- multiplicative, lognormal errors
- if we use the square root transformation

$$Y_{i,j} = \left[\sqrt{f_j(X_i, oldsymbol{eta})} + \epsilon_{i,j}\right]^2$$

• notice a problem?

# The Box-Cox family

Calibrating Environmental Engineering Models

David Rupper

Background

The team

The research proble

The Mode

Modeling the noise

Methodology

Overview Locating mode

RBF approximati

Case Study

Chemical spill mod

Summar

• the most common transformation family is due to Box and Cox (1964):

$$h(y,\lambda) = \frac{y^{\lambda} - 1}{\lambda} \text{ if } \lambda \neq 0$$
  
=  $\log(y) \text{ if } \lambda = 0$ 

# The Box-Cox family

### Calibrating Environmental Engineering Models

David Rupper

### Background

The team
The research prob

#### The Mode

Modeling the noise

### Methodology

Locating mode
Experimental Design
RBF approximation

Case Study
Chemical spill mode
Monte Carlo

Summary

• the most common transformation family is due to Box and Cox (1964):

$$h(y,\lambda) = \frac{y^{\lambda} - 1}{\lambda} \text{ if } \lambda \neq 0$$
  
=  $\log(y) \text{ if } \lambda = 0$ 

- technical problem:
  - $\bullet$  does not map  $(0,\infty)$  onto  $(-\infty,\infty),$  except for  $\lambda=0$
  - so transformed response has a truncated normal distribution
  - this makes Bayesian inference more complex

# COIL transformation family

### Calibrating Environmental Engineering Models

David Rupper

Background
The team

The Model

Modeling the noise
Likelihood

Overview

Locating mode

Experimental Design

RBF approximation

MCMC sampling

Case Study Chemical spill mod Monte Carlo

Summary

• COnvex combination of Identity and Log (COIL) family:

$$h_C(y, \lambda) = \lambda y + (1 - \lambda) \log(y), \quad 0 \le \lambda \le 1.$$

- We restrict  $\lambda$  to [0,1), since  $h_C(\cdot,1)$  does not map  $(0,\infty)$  to  $(-\infty,\infty)$
- COIL can approximate Box-Cox:
  - For each  $\lambda \in [0,1)$  there are constants  $\lambda' \in [0,1)$  and  $a,b \in \mathbb{R}$  such that

$$h_{BC}(y,\lambda) \approx a + b h_C(y,\lambda')$$

for a wide range of y values (verified empirically)

- The inverse  $h_C^{-1}(\cdot,\lambda)$  does not have a closed form
  - evaluate by interpolation (fast)

### Multivariate transformations

Calibrating Environmental Engineering Models

David Rupper

 $\mathsf{Background}$ 

The team

The research proble

The Mode

Environmental

Modeling the noise Likelihood

Methodology

Overview

Locating mode

Experimental Dec

RBF approximation
MCMC sampling

Case Study

Chemical spill mo

Summar

Define

$$\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_d)^T$$

and

$$h(y, \boldsymbol{\lambda}) = \{h(y_1, \lambda_1), \dots, h(y_d, \lambda_d)\}^T$$

# Separable correlation model

### Calibrating Environmental Engineering Models

Modeling the noise

Define the noise vectors:

• 
$$\epsilon_i = (\epsilon_{i,1}, \dots, \epsilon_{i,d})^T = h\{Y_i, \boldsymbol{\lambda}\} - h\{f(X_i, \boldsymbol{\beta}), \boldsymbol{\lambda}\}$$

$$\bullet \ \epsilon_{\bullet,j} = (\epsilon_{1,j}, \dots, \epsilon_{n,j})^T$$

$$\bullet \ \boldsymbol{\epsilon} = (\epsilon_1^T, \dots, \epsilon_n^T)^T$$

• 
$$cov(\epsilon_{i,j}, \epsilon_{i',j'}) = C_{j,j'} \cdot \rho_{ST}(X_i, X_{i'}; \gamma)$$

- C is a  $d \times d$  covariance matrix for  $\epsilon_i$
- $\rho_{ST}(X_i, X_{i'}; \gamma)$  is a space-time correlation function parameterized by  $\gamma$

$$ullet ext{ Var}\{oldsymbol{\epsilon}\} = oldsymbol{\Sigma}(oldsymbol{ heta}) = oldsymbol{S}(oldsymbol{\gamma}) \otimes oldsymbol{C}$$

$$oldsymbol{ heta} oldsymbol{ heta} = (oldsymbol{\gamma}, oldsymbol{C})$$

• 
$$S_{i,i'}(\boldsymbol{\gamma}) = \rho_{ST}(X_i, X_{i'}; \boldsymbol{\gamma})$$

### TBS Likelihood

Calibrating Environmental Engineering Models

David Rupper

Background
The team

The team
The research problem

The Mode

Environmental mod

Modeling the noise

Likelihood

Methodology

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill mod

Summary

• Our statistical model is  $h\{Y, \lambda\} \sim MVN [h\{f(\beta), \lambda\}, \Sigma(\theta)]$ 

Likelihood is

$$[Y|oldsymbol{eta},oldsymbol{\lambda},oldsymbol{ heta}]=$$

$$\frac{\exp\left[-0.5 \|h(\boldsymbol{Y}, \boldsymbol{\lambda}) - h\{\boldsymbol{f}(\boldsymbol{\beta}), \boldsymbol{\lambda}\}\|_{\boldsymbol{\Sigma}(\boldsymbol{\theta})^{-1}}^{2}\right]}{(2\pi)^{nd/2} |\boldsymbol{\Sigma}(\boldsymbol{\theta})|^{1/2}} \cdot |J_{h}(\boldsymbol{Y}, \boldsymbol{\lambda})|$$

- $|J_h(Y, \lambda)|$  is the Jacobian
- ullet  $\Sigma(oldsymbol{ heta})$  is the covariance matrix

# Overview of Methodology

#### Calibrating Environmental Engineering Models

David Rupper

The team

The Model

Environmental model
Modeling the noise
Likelihood

#### Methodology Overview

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill model
Monte Carlo

Summary

### Goal:

- Approximate the posterior density accurately with as few expensive likelihood evaluations as possible
- There are four steps:
  - Locate the region(s) of high posterior density
  - Find an "experimental design" that covers the region of high posterior density
    - the likelihood is evaluated on this design
  - Use function evaluations from Steps 1 and 2 to approximate the posterior
  - MCMC and standard Bayesian analysis using the approximate posterior density

# Removing nuisance parameters

Calibrating Environmental Engineering Models

David Rupper

Background

The team

The research prob

#### The Mode

Environmental mode Modeling the noise Likelihood

#### Methodology Overview

Locating mode
Experimental Desig
RBF approximation

Case Study

Chemical spill mo Monte Carlo

Summar

The posterior density is

$$[oldsymbol{eta}, oldsymbol{\lambda}, oldsymbol{ heta} | oldsymbol{Y}] = rac{[oldsymbol{eta}, oldsymbol{\lambda}, oldsymbol{ heta}, oldsymbol{Y}]}{\int [oldsymbol{eta}, oldsymbol{\lambda}, oldsymbol{ heta}, oldsymbol{Y}] \, doldsymbol{eta} \, doldsymbol{\lambda} \, doldsymbol{ heta}},$$

- ullet where  $[oldsymbol{eta},oldsymbol{\lambda},oldsymbol{ heta},oldsymbol{Y}]=[oldsymbol{Y}|oldsymbol{eta},oldsymbol{\lambda},oldsymbol{ heta}]\cdot[oldsymbol{eta},oldsymbol{\lambda},oldsymbol{ heta}]$
- Interest focuses on

$$[oldsymbol{eta}|oldsymbol{Y}] = \int [oldsymbol{eta}, oldsymbol{\lambda}, oldsymbol{ heta}|oldsymbol{Y}] \, doldsymbol{\lambda} \, doldsymbol{ heta}$$

# Removing nuisance parameters - four methods

Calibrating Environmental Engineering Models

David Rupper

Background
The team
The research probles

The Model

Environmental mode Modeling the noise Likelihood

Methodology Overview

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill model
Monte Carlo

Summary

• Exact:

$$[oldsymbol{eta}|\,oldsymbol{Y}] = \int [oldsymbol{eta}, oldsymbol{\lambda}, oldsymbol{ heta}|\,oldsymbol{Y}] \, doldsymbol{\lambda} \, doldsymbol{ heta}$$

• Profile posterior:

$$\pi_{\max}(\boldsymbol{\beta},\,\boldsymbol{Y}) = \sup_{\boldsymbol{\zeta}}[\boldsymbol{\beta},\boldsymbol{\zeta},\,\boldsymbol{Y}] = [\boldsymbol{\beta},\widehat{\boldsymbol{\zeta}}(\boldsymbol{\beta}),\,\boldsymbol{Y}]$$

- ullet  $\widehat{oldsymbol{\zeta}}(oldsymbol{eta})$  maximizes  $[oldsymbol{eta}, oldsymbol{\zeta}, oldsymbol{Y}]$  with respect to  $oldsymbol{\zeta}$
- Laplace approximation:
  - multiplies the profile posterior by a correction factor
- Pseudo-posterior:

$$[\boldsymbol{\beta}, \widehat{\boldsymbol{\zeta}}(\widehat{\boldsymbol{\beta}}), \, \boldsymbol{Y}]$$

•  $\{\widehat{\beta}, \widehat{\zeta}(\widehat{\beta})\}$  is the MAP = joint mode of posterior

# Finding posterior mode using Condor

Calibrating Environmental Engineering Models

David Ruppe

The team

The Model

Environmental mode Modeling the noise Likelihood

Methodology

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study Chemical spill model Monte Carlo

- When locating the posterior mode we want:
  - As few expensive function evaluations as possible
  - A small percentage of "wasted evaluations"
    - a) few evaluation locations in region of very low posterior probability
    - b) few evaluation locations that are very close together
  - Getting very close to the mode is not a goal
- All good optimization techniques achieve 1
- Optimization methods based on numerical derivatives violate 2 b)
  - MATLAB's fmincon exhibited this problem
- CONDOR uses sequential quadratic programming
  - worked well in our empirical tests

### Further function evaluations needed

Calibrating Environmental Engineering Models

David Ruppe

Background The team

The team

The research proble

The Mode

Environmental mode Modeling the noise Likelihood

Methodology Overview

Experimental Design
RBF approximation

Case Study
Chemical spill mod

Summan

Goal:

- approximate posterior on  $C_R(\alpha) = \{ \beta : [\beta, Y] > \kappa(\alpha) \}$
- Function evaluations in optimization stage insufficient to approximate posterior accurately

# Constructing the experimental design

Calibrating Environmental Engineering Models

David Rupper

The team

### The Mode

Environmental mode Modeling the noise Likelihood

Methodology

Locating mode

Experimental Design

RBF approximation

MCMC sampling

Case Study
Chemical spill mod

- Normal approximation to posterior
  - requires a small number of additional function evaluations
- 2

$$\widehat{C}_{R}(\alpha) = \left\{ \boldsymbol{\beta} : (\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}})^{T} \left[ \widehat{\boldsymbol{I}}^{\boldsymbol{\beta}\boldsymbol{\beta}} \right]^{-1} (\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}}) \leq \chi_{p,1-\alpha}^{2} \right\}$$

- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \bf Space-filling \ design \ on \ } \hline $\widehat{C}_R(\alpha)$ \\ \hline \end{tabular}$
- Remove points not in  $\widehat{C}_R(\alpha')$  for  $\alpha' < \alpha$ 
  - $\bullet$  E.g.,  $\alpha=0.1$  and  $\alpha'=0.01$

### Radial basis functions

Calibrating Environmental Engineering Models

David Rupper

Background

The team

The research probl

The Mode

Modeling the noise

Methodology

Locating mode
Experimental Design
RBF approximation

MCMC sampling

Case Study

Monte Carlo

ummar

ullet  $\pi(\cdot, extbf{ extit{Y}})$  denotes one of the approximations to  $[oldsymbol{eta}, extbf{ extit{Y}}]$ 

### Radial basis functions

### Calibrating Environmental Engineering Models

RBF approximation

•  $\pi(\cdot, Y)$  denotes one of the approximations to  $[\beta, Y]$ 

•  $l(\cdot) = \log\{\pi(\cdot, \mathbf{Y})\}$  is interpolated at  ${\cal B}_D = \{{\cal B}^{(1)}, \dots, {\cal B}^{(N)}\}$  by

$$\widetilde{l}(\boldsymbol{\beta}) = \sum_{i=1}^{N} a_i \phi(\|\boldsymbol{\beta} - \boldsymbol{\beta}^{(i)}\|_2) + q(\boldsymbol{\beta})$$

### where

- $a_1,\ldots,a_N\in\mathbb{R}$
- ullet  $\phi$  is a radial basis function
  - we used  $\phi(r) = r^3$
- $ullet q \in \Pi^p_m$  (the space of polynomials in  $\mathbb{R}^p$  of degree  $\leq m$
- $\boldsymbol{\beta} \in \mathbb{R}^p$

# Autoregressive Metropolis-Hastings algorithm

### Calibrating Environmental Engineering Models

David Rupper

Background The team

The Model

Environmental mode Modeling the noise

Methodology

Experimental Des
RBF approximation
MCMC sampling

Case Study
Chemical spill mod

Summary

 $\bullet$  draw MCMC sample from  $\widetilde{\pi}(\cdot,\,\boldsymbol{Y}) = \exp\{\widetilde{l}(\cdot)\}$ 

• restrict sample to  $\widehat{C}_R(\alpha')$ 

Metropolis-Hastings candidate:

$$oldsymbol{eta}^c = oldsymbol{\mu} + oldsymbol{
ho}(oldsymbol{eta}^{(t)} - oldsymbol{\mu}) + oldsymbol{e}_t$$

- $oldsymbol{\mu} = \mathsf{location}$  parameter
- $oldsymbol{
  ho}=\mathsf{autoregressive}$  parameter (matrix)
  - $m{\bullet}$   $ho=0 
    ightarrow {
    m independence}$  MH
  - $\bullet \ \, \rho = 1 \rightarrow {\rm random\text{-}walk} \, \, {\rm MH} \, \,$
- ullet  $e_t$ 's are *i.i.d.* from density g
- ullet if the candidate is accepted, then  $oldsymbol{eta}^{(t+1)}=oldsymbol{eta}^c$
- otherwise,  $\boldsymbol{\beta}^{(t+1)} = \boldsymbol{\beta}^{(t)}$

# Applications in Environmental Engineering

Calibrating Environmental Engineering Models

David Ruppe

The team

Environmental mode

Modeling the noise

Methodology Overview

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study

Monte Carlo

- few statisticians are working on environmental engineering problems
- environmental engineers typically use ad hoc and inefficient statistical methods
- modern statistical techniques such as variance functions, transformations, spatial-temporal models potentially offer substantial improvements
- statisticians and environmental will both benefit from collaboration

### **GLUE**

#### Calibrating Environmental Engineering Models

David Rupper

Background
The team
The research proble

The Model

Environmental mode

Modeling the noise

Methodology

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill mod

Monte Carlo

- GLUE = Generalized Likelihood Uncertainty Estimation
- widely used
- apparently considered state-of-the-art by many environmental engineers
- replaces the likelihood function of iid normal errors with an arbitrary objective function
- shows no appreciation of maximum likelihood as a general method
- objective function is not based on the data-generating probability model

# Synthetic data example: Chemical spill

### Calibrating Environmental Engineering Models

David Ruppe

The research proble

The Model
Environmental mode
Modeling the noise
Likelihood

Methodology
Overview
Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill model
Monte Carlo

- To test algorithm:
  - use computationally inexpensive function
  - then approximate and exact result can be compared
- chemical accident caused spill at two locations on a long channel
  - ullet mass M spill at location 0 at time 0
  - ullet mass M spill at location L and time au
- diffusion coefficient is d
- parameter vector is  $\boldsymbol{\beta} = (m, d, l, \tau)^T$
- want estimate of average concentration at end of channel
- l is of special interest
- need assessments of uncertainty as well

# Chemical spill model

Calibrating Environmental Engineering Models

David Rupper

#### \_ . .

The team

The research problem

#### The Mode

Modeling the noise

#### Methodology

Locating mode
Experimental Desi

### Case Study

Chemical spill model

Summary

### Model is:

$$\begin{split} C(s,t;M,D,L,\tau) &= \frac{M}{\sqrt{4\pi Dt}} \exp\left[\frac{-s^2}{4Dt}\right] \\ &+ \frac{M}{\sqrt{4\pi D(t-\tau)}} \exp\left[\frac{-(s-L)^2}{4D(t-\tau)}\right] \cdot \mathbb{I}(\tau < t) \end{split}$$

### Details of simulation

Calibrating Environmental Engineering Models

David Rupper

Background
The team
The research probles

Environmental mode

Modeling the noise

Methodology

Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill model
Monte Carlo

Summar

- assume data is collected at spatial location 0 (0.5) 2.5 and times 0.3 (0.3) 60 (5 time 200 observations)
- assume that a major goal is to estimate average concentration of time interval [40, 140] at the end of the channel (s=3), specifically

$$F(\beta) = \sum_{i=0}^{20} f\{(3, 40 + 5i), \beta\}$$

 requires additional function evaluations (but not much more computation)

### Details, continued

Calibrating Environmental Engineering Models

David Rupper

### Background

The team
The research proble

#### The Mode

Environmental mode

Modeling the noise

Likelihood

### Methodology

Overview

Locating mode

Experimental Desig

RBF approximation

Case Study Chemical spill model

iumman

 $\bullet \ \lambda = 0.333 \ {\rm in \ COIL \ family}$ 

- one chemical species
- ullet  $\sigma$  can be integrated out of the posterior analytically

# Posterior densities: components of $oldsymbol{eta}$

Calibrating Environmental Engineering Models

David Rupper

The team

The Mode

Environmental mode Modeling the noise Likelihood

Methodology
Overview
Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill model
Monte Carlo



Figure: Kernel estimates of the posterior densities of  $\beta_i$ 's with the exact joint posterior (solid line) and RBF approximations to joint posterior (dashed line), pseudoposterior (dashed-dotted line), profile posterior with and without Laplace correction (dotted and large dotted lines, respectively).

# Posterior densities: $F(\beta)$

Calibrating Environmental Engineering Models

David Rupper

Background

\_\_\_

The research proble

#### The Mode

Modeling the noise

#### Methodology

Locating mode Experimental Desig RBF approximation MCMC sampling

Case Study
Chemical spill model
Monte Carlo



Figure: Kernel smoothed density estimates for the posterior of  $F(\beta)$ .

### Results of a Monte Carlo experiment

Calibrating Environmental Engineering Models

David Ruppe

The team
The research probl

Environmental mode Modeling the noise Likelihood

Overview
Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill model
Monte Carlo

Summary

Table: Observed coverage probabilities of Bayesian credible intervals.

|    |                        | size .9 cred. int. |        | size .95 cred. int. |        | size .99 cred. int. |        |
|----|------------------------|--------------------|--------|---------------------|--------|---------------------|--------|
|    |                        | exact              | RBF    | exact               | RBF    | exact               | RBF    |
| ß  | $\mathbf{B}_1$         | .905               | .904   | .950                | .944   | .986                | .990   |
|    |                        | (.009)             | (.009) | (.007)              | (.007) | (.004)              | (.003) |
| β  | $\overline{3_2}$       | .908               | .903   | .954                | .951   | .991                | .987   |
|    |                        | (.009)             | (.009) | (.007)              | (.007) | (.003)              | (.004) |
| β  | <b>3</b> 3             | .916               | .899   | .953                | .954   | .989                | .988   |
|    |                        | (.009)             | (.010) | (.007)              | (.007) | (.003)              | (.003) |
| β  | <b>3</b> <sub>4</sub>  | .904               | .909   | .947                | .945   | .988                | .987   |
|    |                        | (.009)             | (.009) | (.007)              | (.007) | (.003)              | (.004) |
| F( | $(\boldsymbol{\beta})$ | .904               | .902   | .947                | .937   | .994                | .980   |
|    |                        | (.009)             | (.009) | (.007)              | (800.) | (.002)              | (.004) |

### What have we achieved?

### Calibrating Environmental Engineering Models

David Rupper

Background
The team
The research problem

The Model

Environmental mode

Modeling the noise

Likelihood

Methodology
Overview
Locating mode
Experimental Design
RBF approximation
MCMC sampling

Case Study
Chemical spill model
Monte Carlo

Summary

### In this research we have:

- applied modern statistical tools to calibration of environmental engineering models, e.g.,
  - transform-both-side
  - spatial-temporal correlation models
  - MCMC
- careful modeling of the noise increases estimation accuracy, often by a substantial amount
- implemented a Bayesian method of uncertainty analysis
- substantially reduced the number of evaluations of the computationally expensive environmental model by a meta-model based on RBF's

### Current and Future Work

Calibrating Environmental Engineering Models

David Rupper

The team

The research probler

The Model

Environmental mod

Environmental model Modeling the noise Likelihood

Overview

Locating mode

Experimental Design

RBF approximation

MCMC sampling

Case Study
Chemical spill model

- multivariate observations, e.g., several chemical species
- multimodal posterior density
- covariate measurement error:
  - e. g., sampling error for rainfall can induce large correlated errors in a stream flow model
  - unlike response measurement error, covariate measurement error induces bias
- automatic tuning of MCMC